YOUR NAME YOUR EMAIL November 6, 2025

Homework 6

- 1. (1 point) If X and Y are independent exponential(λ) random variables, find the joint density of the polar coordinates R and Θ of the point (X,Y). Are R and Θ independent?
- 2. (1 point) Let X and Y be jointly continuous random variables, with pdf f(x,y). Find an expression for the density of

$$Z = X - Y$$
.

3. (1 point) If T_1 and T_2 are independent exponential random variables, find the density function of

$$R = T_{(2)} - T_{(1)}$$
.

- 4. (1 point) If X_1 and X_2 are independent Poisson random variables with parameters λ_1 and λ_2 respectively, then show that $S_2 = X_1 + X_2$ is a Poisson random variable with parameter $\lambda_1 + \lambda_2$.
- 5. (1 point) Use the problem above and induction to argue that if X_i for i = 1, 2, ..., n are independent Poisson random variables with parameters λ_i , respectively, then if we define the sum as

$$S_n = X_1 + X_2 + \ldots + X_n,$$

then S_n is a Poisson random variable with parameter $\sum_i \lambda_i$.

- 6. Let T be an exponential random variable with parameter β and let W be a random variable independent of T which assumes the value 1 with probability 2/3 and the value -1 with probability 1/3.
 - (a) (1 point) Find the density of X = WT.

Hint: I suggest working from first-principles here. Consider $F(x) = P(X \le x)$, and split up the event $\{X \le x\}$ as the union of $\{X \le x, W = 1\}$ and $\{X \le x, W = -1\}$.

- (b) (1 point) Find E[X]
- 7. A random variable V is said to have a distribution symmetric about 0 if the distribution of V is the same as that of -V. Let V be a continuous random variable with continuous density function f.
 - (a) (1 point) Show that V is distributed symmetrically about 0 if and only if f(t) = f(-t), for every t. In other words, f is an even function.
 - (b) (1 point) Show that E(V) = 0.