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Introduction



Overview

� We will formally introduce the idea of point estimation.

� In addition to an introduction, we will introduce the concept

of the empirical distribution, as well as methods of moment

estimators.

� The material for this section largely comes from Chapter 8 of

Rice (2007).
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Point Estimation: An introduction



Point estimation

� In the previous lecture(s), we provided an example of Bayesian

vs Frequentsist point-estimation via first principles.

� That is, using the various interpretations, we could reason an

estimate for the probability p in a binomial experiment.

� We are now interested in studying approaches for more

general cases.

� Given a dataset and a chosen model, how can we estimate

parameters?
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Point estimation II

� We will first start with some notation, and motivating

examples.

� Term model in this class will generally refer to a probability

model, and can be based on a discrete or continuous

probability measure.

3 / 45



Point estimation III

Normal Model

The Normal (or Gaussian) family of distributions arises often in

the real world. Examples include human heights (conditioned on

gender), rainfall amounts, and many biological measurements are

approximately normal (or log-normal).

Given a set of observations x1, x2, . . . , xn, we may model these

as iid normal Xi ∼ N(µ, σ2), and our goal being using the data

to estimate the values of µ or σ.
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Point estimation IV

Regression

Sometimes the probability model is implicit, but present.

Consider the regression model:

Yi = β0 + β1Xi + εi.

We often think of fitting this regression model by minimizing the

average squared-error: (Yi − Ŷi)
2. However, this approach

typically corresponds to an implicit probability model for the error

terms εi, namely a normal distribution with mean 0. In this case,

we might want to estimate β0, β1, and σ2, which is Var(εi).
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Point estimation V

Poisson Process

Another common example is a Poisson Process model. Many

real-world phenomena are well-approximated by a Poisson

process, over space or time. Examples include arrival times at a

gas station, number of meteors landing in a geographic area,

radioactive decay, etc. Here, there is only one parameter we want

to estimate using data, namely the rate λ.
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Parameter Estimation

� All of the above examples have the common feature that we

pick a model, and we want to use the model to describe the

data-generating process.

� More accurately, however, we pick a candidate family of

models; (Gaussian family, Poisson Family, Linear Regression

family, etc).

� Generally, the exact model needed within a family of models is

determined by a few parameters.
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Example: Gamma-Rainfall

� The Gamma distribution depends on two parameters, α and λ:

fX(x;α, λ) =
1

Γ(α)
λαxα−1e−λx.

� The Gamma distribution is quite flexible, and works as a

useful model for various situations.

� One example is modeling rainfall amounts per-storm under

two conditions, cloud seeding vs not cloud seeding (simulated

data, couldn’t find original data).

� A Gamma distribution fits both samples well, but we get

different parameters α and λ for the two different samples

� Differences in the respective distributions are reflected in

differences in the parameters α and λ.
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Two-sample Rainfall

Figure 1: Data and model fit to two different Gamma distributions.
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Notation and generalizations

� We will generalize by using the following ideas and notations.

� We will denote the observed data as x∗1, x
∗
2, . . . , x

∗
N , and use

the shorthands x∗1:N if we emphasize the entire collection, and

x∗ if the emphasis is not needed.

� We assume that the data are realizations of random variables

X1, X2, . . . , XN , again using the notation X1:N for the

collection of N random variables, or X if this is not needed.

� In general, the data x∗i and random variables Xi can be

multivariate, but focus primarily on the univariate case.
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Notation and generalizations II

� We will be interested in fitting a probabilistic model

fX1:N
(x1:N ; θ) using the data. The model may correspond to

a discrete probability, or a continuous probability. In these

cases, f is usually a pmf of pdf, respectively.

� Subscripts will be dropped occasionally if it is not necessary.

For instance, f(x; θ) is taken to mean the model of all data

x = x1:N , and would formally be expressed as fX1:N
(x1:N ; θ).

� This approach is sometimes called “function overload”; it’s

not my favorite approach, but it is convenient. The meaning

of the function is primarily understood by the arguments and

context.

� The function f(x; θ) belongs to a particular family of models,

indexed by θ, which is generally multivariate.
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Notation and generalizations III

Normal model example

Suppose we observe the following data: 3.49, 2, 3.38, 1.62, 2.18,

and we would like to fit a normal model to the data, assuming

the data are iid. Then x∗1 = 3.49, x∗2 = 2, and so forth, and the

model family depends on θ = (µ, σ2), and the model can be

expressed as:

f(x; θ) = fX1:5(x1:5;µ, σ
2)

=

5∏
i=1

fXi(xi;µ, σ
2)

=

5∏
i=1

1

σ
√
2π

e−(xi−µ)2/2σ2

Our goal is to estimate µ, σ2 using the observed data x∗1:5.
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Notation and Generalization (continued)

� Our goal now is to develop general procedures for estimating

θ, using observed data x∗, and a proposed family of models

f(x; θ).

� We will develop three main approaches: (1) Method of

Moments (2) Maximum Likelihood Estimation, and (3)

Bayesian estimation.

� In this section, we will focus only on method of moments

estimators.

� Once point estimation techniques are developed, we will

provide theory about these estimates and their uncertainty;

discussing bias, variance, and optimality of estimates.
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Brief Introduction to R



R introduction

� Before we start looking at real-data examples, let’s introduce

some basic R coding principles that will help us calculate

moments from the data.

� R is a programming language, but for the sake of this class,

we’ll just treat it as a statistics calculator.

� For now, we will only focus on the most simple data types and

operations: creating objects, vectors, and computing summary

statistics.
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R introduction II

� First, saving objects in R. We can use = (like most languages),

or the assignment operator: <-

x <- 2

x + 2

[1] 4
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R introduction III

� A vector in R is a collection of objects of the same data type.

In this class, we will only need to use numeric data types
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R introduction IV

x <- c(1, 2, 3, 4, 5)

class(x)

[1] "numeric"

mean(x)

[1] 3

sum(x)

[1] 15
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R introduction V

� Some fast ways of building vectors include:

1:5 # this gives 1, 2, 3, 4, 5

[1] 1 2 3 4 5

seq(1, 10, by = 2) # Gives 1, 3, 5, 7, 9

[1] 1 3 5 7 9
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R introduction VI

� For generating random numbers, we can use the syntax:

rdist.
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R introduction VII

rnorm(n = 10, mean = 2, sd = 1)

[1] 1.7531041 0.7844391 3.5614051 2.4273102 0.7989765 3.0524585

[7] 0.6949364 1.3073924 2.6026489 1.8022469

rpois(n = 7, lambda = 5)

[1] 2 6 1 5 5 9 6

rbeta(n = 3, shape1 = 0.8, shape2 = 1.3)

[1] 0.51652672 0.10386537 0.05986089
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R introduction VIII

� Lastly (and maybe most important), function documentation

and help is readily available by appending a question mark:

?rnorm

?mean

?rnorm

?sd
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Method of Moments



Motivation

� The Method of Moments (MoM) estimation technique is a

simple idea.

� Pick a family of models f(x; θ), and observed data x∗.

� The family of models will have theoretical moments, i.e.,

E[Xk].

� Generally, these moments can be expressed in terms of the

model parameters, θ.

� Thus, we will estimate θ̂ so that the data moments match the

theoretical moments.
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The empirical distribution

� One justification of this approach considers the empirical

distribution of observed data.

� Let X1, X2, . . . , XN be random variables, representing a

possible data sample.

� We will assume that Xi are iid, from some distribution Fθ (Fθ

is the cdf here).

� We will define the empirical distribution function as:

Fn(t) =
1

N

N∑
i=1

I[Xi ≤ t].

� When we observe a specific dataset x∗, we can plug in these

numbers to get a specific distribution that is not random.
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The empirical distribution II

� A few things to note is that Fn(t) is a proper CDF.

� By the law of large numbers, Fn(t)
a.s.−→ Fθ(t) for every point

t.

� The Glivenko–Cantelli theorem also strengthens this

statement by saying that the convergence is uniform, in the

sense that supt |Fn(t)− Fθ(t)| converges to zero.
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The empirical distribution III

Example: empirical distribution function for Poisson Data:

set.seed(123) # Reproducible results

x <- rpois(n = 25, lambda = 6)

plot(ecdf(x))

lines(

x = seq(1e-16, 15, length.out = 1000),

y = ppois(seq(1e-16, 15, length.out = 1000), 6),

col = ’red’

)
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The empirical distribution IV
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Method of Moments Estimation

� It can be shown that the kth moment of the empirical

distribution is

µ̂k =
1

N

N∑
i=1

Xk
i .

� Method of Moments idea:

� For many commonly used parametric families (e.g., Gaussian,

Poisson), the distribution is completely specified by a small set

of parameters.

� These parameters are typically explicit functions of the

moments of the distribution (e.g., mean and variance for the

Gaussian).
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Method of Moments Estimation II

� Although the moment generating function (MGF) uniquely

determines the entire distribution, in many model families, the

relevant parameters are uniquely determined by just the first

few moments.

� Therefore, as the empirical moments computed from data

converge to the true moments (by the Law of Large Numbers),

it is natural to estimate model parameters by equating

empirical and theoretical moments—leading to the method of

moments estimators.
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Method of Moments: generalized version

� To summarize mathematically, let µk = E[Xk] be the

theoretical kth moment.

� Let µ̂k = 1
N

∑N
i=1X

k
i be the kth sample moment.

� µ̂k is an estimate of µk; however, we don’t want an estimate

of µ, we want an estimate of θ!

� For models with finite parameters, θ = (θ1, . . . , θk), we can

often express θi as a function of (µ1, . . . , µk):

θi = gi(µ1, . . . , µk)

.
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Method of Moments: generalized version II

� Thus, our estimate of θi would be found by plugging in the

empirical moments:

θ̂i = gi(µ̂1, . . . , µ̂k).
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Examples

Poisson Distribution

Suppose we observe data x∗1:N , and want to fit a Poisson model.

Since the Poisson distribution only has one parameter (λ), our

goal is to use x∗ to estimate λ.
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Real-data example

Poisson distribution with real data

The National Institute of Science and Technology collected data

about asbestos fibers on filters. Asbestos dissolved in water was

spread on a filter, and the number of fibers in each of 23 grid

squares were counted:

[1] 31 29 19 18 31 28 34 27 34 30 16 18 26 27 27 18 24 22

[19] 28 24 21 17 24
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Real-data example II

The mean can be calculated as:

mean(x)

[1] 24.91304

� What about the error associated with this estimate?
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Sampling Distribution

� As always, we are interested in the the uncertainty related to

our estimates.

� In most cases, we cannot directly calculate uncertainty of

estimates, and we will have to rely on more advance theory,

discussed later.

� Sometimes, however, we can calculate some form of

uncertainty based on the form of the estimator, and model

assumptions.

� The last (and next) models are such cases.
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Sampling Distribution II

Sampling Distribution

Most estimates θ̂ of θ are functions of the random variables

X1, X2, . . . , XN . Thus, θ̂ is also a random variable. The

distribution of θ̂ is called the sampling distribution.

� In most cases, the exact distribution of θ̂ is unknowable.

� Instead, we often get approximations to this distribution, and

in particular, the variance of the distribution, in order to

quantify uncertainty of the estimator.

� For the Poisson model and the method of moments estimator,

however, we can calculate this exactly.
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Sampling Distribution III

Sampling distribution of Poisson MoM estimator

Let X1, . . . , XN be modeled as iid from a Poisson(λ)

distribution. If λ̂ is the method of moments estimator of λ, what

is its sampling distribution?
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Sampling Distribution IV

For our specific dataset, we can approximate the standard error as:

sqrt(mean(x) / length(x)) |> round(2)

[1] 1.04

The “pipe” operator in R |> takes the output of one function, and

inputs it as the first argument into the next function.
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Example: Model Checking

� In addition to estimating the stochastic uncertainty due to

sampling distribution, we might want to assess inductive

uncertainty due to model selection.

� This is a large topic, one we will revisit in much more detail

later.

� For now, I want to present a simple idea that can be done

with what we already know.

� This will be based on a parametric bootstrap, a technique we

will discuss in detail later in the course.
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Example: Model Checking II

� The idea: we claim that the data come from a Poisson(λ),

and we estimated λ.

� If the data really are Poisson(λ), then our estimate λ̂ ≈ λ.

� We can simulate many different data from Poisson(λ̂), and

compare this to our real data.

� If the model is reasonable, then our data shouldn’t look too

different from the simulations.

� We can compare the empirical distribution functions from the

real data, and simulations.
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ECDF: R code

library(tidyverse)

lambda <- mean(x)

results <- replicate(10, rpois(length(x), lambda = lambda)) |>

as.data.frame()

colnames(results) <- paste0("sample_", 1:10)

results |>

pivot_longer(

cols = everything(), names_to = "replicate",

names_prefix = "sample_", values_to = "val"

) %>%

ggplot(aes(val, group = replicate)) +

stat_ecdf(geom = "step", col = ’grey30’) +

stat_ecdf(

data = data.frame(val = x, replicate = ’0’),

geom = ’step’, col = ’red’, linewidth = 1.2

) + theme_bw()
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Plot output
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Example: Normal Distribution

Normal Distribution

Suppose we observe N observations, and we want to model them

as iid N(µ, σ2). Find the method of moments estimator

θ = (µ, σ2).
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Example: Gamma Distribution

MoM estimator for Gamma distribution

Consider modeling the data X1, . . . , XN as iid Gamma(α, λ).

Find the method of moments estimator for these data.
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Example: Muon Decay

MoM estimator for Muon Decay

In statistical physics, the angle ϕ at which electrons are emitted

in muon decay is modeled using the following density:

f(x; α) =
1 + αx

2
, −1 ≤ x ≤ 1,

and where the parameter α satisfies −1 ≤ α ≤ 1, and x = cosϕ.

Supposing we observe data X1, X2, . . . , XN , what is the method

of moments estimator for α?
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