Mathematical Statistics |l

Introduction to Point Estimation

Jesse Wheeler
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Introduction



o We will formally introduce the idea of point estimation.

e |n addition to an introduction, we will introduce the concept
of the empirical distribution, as well as methods of moment
estimators.

e The material for this section largely comes from Chapter 8 of
Rice (2007).
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Point Estimation: An introduction



Point estimation

e In the previous lecture(s), we provided an example of Bayesian
vs Frequentsist point-estimation via first principles.

e That is, using the various interpretations, we could reason an
estimate for the probability p in a binomial experiment.

e We are now interested in studying approaches for more
general cases.

e Given a dataset and a chosen model, how can we estimate
parameters?
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Point estimation |l

o We will first start with some notation, and motivating
examples.

e Term model in this class will generally refer to a probability
model, and can be based on a discrete or continuous
probability measure.
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Point estimation IIl

Normal Model

The Normal (or Gaussian) family of distributions arises often in
the real world. Examples include human heights (conditioned on
gender), rainfall amounts, and many biological measurements are

approximately normal (or log-normal).

Given a set of observations x1, zo, ..., x,, we may model these
as iid normal X; ~ N(u,02), and our goal being using the data
to estimate the values of pu or o.
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Point estimation IV

Regression

Sometimes the probability model is implicit, but present.

Consider the regression model:

Y = 50+51X @

We often think of fittin
average squared-error:

typically corresponds to an implicit probability model for the error
terms g;, namely a normal distribution with mean 0. In this case,
we might want to estimate 3y, 1, and o2, which is Var(e;).
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Point estimation V

¢ Poisson Process
Another common example is a Poisson Process model. Many
real-world phenomena are well-approximated by a Poisson
process, over space or time. Examples include arrival times at a
gas station, number of meteors landing in a geographic area,
radioactive decay, etc. Here, there is only one parameter we want

to estimate using data, namely the rate[\.
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Parameter Estimation

o All of the above examples have the common feature that we
pick a model, and we want to use the model to describe the
data-generating process

e More accurately, however, we pick a candidate family of
models; (Gaussian family, Poisson Family, Linear Regression
family, etc).

e Generally, the exact model needed within a family of models is
determined by a few parameters.
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Example: Gamma-Rainfall

e The Gamma distribution depends on two parameters, « and A:

1
T, \) = — N\ le M,
Felmed =)
e The Gamma distribution is quite flexible, and works as a
useful model for various situations.

e One example is modeling rainfall amounts per-storm under
two conditions, cloud seeding vs not cloud seeding (simulated
data, couldn’t find original data).

e A Gamma distribution fits both samples well, but we get
different parameters a and \ for the two different samples

o Differences in the respective distributions are reflected in
differences in the parameters o and .
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Two-sample Rainfall
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Figure 1: Data and model fit to two different Gamma distributions.
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Notation and generalizations

X nxd4d
o X' & Rire
o We will generalize by using the following ideas and notations.
e We will denote the observed data as 7, x5, ..., o7, and use
the shorthands z7.,; if we emphasize the entire collection, and

z* if the emphasis is not needed. X*- £

e We assume that the data are realizations of random variables
X1, Xs,..., Xy, again using the notation X;.x for the
collection of N random variables, or X if this is not needed.

e In general, the data x7 and random variables X; can be
multivariate, but focus primarily on the univariate case.

10/45


iPad Air 11-inch (M3)

iPad Air 11-inch (M3)


Notation and generalizations ||

o We will be interested in fitting a probabilistic model
fx,.n(x1:n5;0) using the data. The model may correspond to
a discrete probability, or a continuous probability. In these
cases, f is usually a pmf of pdf, respectively.

e Subscripts will be dropped occasionally if it is not necessary.
For instance, f(x;6) is taken to mean the model of all data
x = x1.n, and would formally be expressed as fx,.  (z1.n;0).

e This approach is sometimes called “function overload”; it's
not my favorite approach, but it is convenient. The meaning
of the function is primarily understood by the arguments and
context.

e The function f(z;6) belongs to a particular family of models,
indexed by 0, which is generally multivariate.
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Notation and generalizations |1l

Normal model example

Suppose we observe the following data: 3.49, 2, 3.38, 1.62, 2.18,
and we would like to fit a normal model to the data, assuming
the data are iid. Then x] = 3.49, 25 = 2, and so forth, and the
model family depends on 6 = (u1, c?), and the model can be

expressed as: :FL‘HGH < —\'F (’)‘»,;N; [ )
RSN

f(xa 9) — fX1;5 (1‘1;5; H, U2>

5
/ :Hin(xi;,uaUQ) \;“'L %
i=1

1 —@i-w?/20
ST oV2m r ot

5
=1

t
Our goal is to estimate u, o using the observed data@

-
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Notation and Generalization (continued)

e Our goal now is to develop general procedures for estimating
0, using observed data x*, and a proposed family of models
f(x;9).

e We will develop three main approaches: (1) Method of
Moments (2) Maximum Likelihood Estimation, and (3)
Bayesian estimation.

e In this section, we will focus only on method of moments
estimators.

e Once point estimation techniques are developed, we will
provide theory about these estimates and their uncertainty;
discussing bias, variance, and optimality of estimates.
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Brief Introduction to R



R introduction

e Before we start looking at real-data examples, let's introduce
some basic R coding principles that will help us calculate
moments from the data.

e R is a programming language, but for the sake of this class,
we'll just treat it as a statistics calculator.

e For now, we will only focus on the most simple data types and
operations: creating objects, vectors, and computing summary
statistics.
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R introduction Il

e First, saving objects in R. We can use = (like most languages),
or the assignment operator: <-

x <- 2
x + 2

[1] 4
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R introduction Il

e A vector in R is a collection of objects of the same data type.
In this class, we will only need to use numeric data types
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R introduction IV

x <- c(1, 2, 3, 4, 5)
class(x)

[1] "numeric"
mean (x)

(11 3

sum(x)

[1] 15
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R introduction V

e Some fast ways of building vectors include:
1:5
[11 1 2 345

seq(1l, 10, by = 2)

_,{GO\O\
[11 13579 g_ub L\( [0) WWCN’X\ |
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R introduction VI

e For generating random numbers, we can use the syntax:
rdist.

v
{QD“@(\(\-;\D] (au\n‘i,fzs/\
D dos o o%(%)
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R introduction VII

rnorm(n = 10, mean = 2, sd = 1)

[1] 1.7531041 0.7844391 3.5614051 2.4273102 0.7989765 3.0524585
[7] 0.6949364 1.3073924 2.6026489 1.8022469

rpois(n = 7, lambda = 5)

[11 26 15596

rbeta(n = 3, shapel = 0.8, shape2 = 1.3)

[1] 0.51652672 0.10386537 0.05986089

20/45



R introduction VIII

e Lastly (and maybe most important), function documentation
and help is readily available by appending a question mark:

?rnorm

?mean
?rnorm
7sd
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Method of Moments



e The Method of Moments (MoM) estimation technique is a
simple idea.

e Pick a family of models f(x;6), and observed data x*. XNP“%U‘\
e The family of models will have th {cal moments, i.e.,

ELX Elx)

e Generally, these moments can be expressed in terms of the
model parameters, 6.

e Thus, we will estimate 0 so that the data moments match the

——————=
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The empirical distribution

e One justification of this approach considers the empirical

distribution of observed data.

o Let X1, Xo,..., XN be random variables, representing a
possible data sample.

e We will assume that X; are iid, from some distribution Fy (Fy
is the cdf here).

o We will define the empirical distribution function as:

[—VLHV{- obs Sawll
than t .

e When we observe a specific dataget x*)we can plug in these

1 N
y(t) = NZI[XZ» <t]. <
i=1

numbers to get a specific distribution that is not random.
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The empirical distribution 11

e A few things to note is that Fy(t) is a proper CDF.

e By the law of large numbers, Fjy(t) =% Fy(t) for every point
t.

e The Glivenko—Cantelli theorem also strengthens this
statement by saying that the convergence is uniform, in the
sense that sup, |F},(t) — Fy(t)| converges to zero.
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The empirical distribution 111

Example: empirical distribution function for Poisson Data:

set.seed(123)
x <- rpois(n = 25, lambda = 6)
plot (ecdf (x))
lines(
x = seq(le-16, 15, length.out = 1000),
y = ppois(seq(le-16, 15, length.out = 1000), 6),

col = ’red’
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The empirical distribution 1V

ecdf(x)
[o0]
9
'_
8 —
E
o
o
3
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Method of Moments Estimation

e |t can be shown that the kth moment of the empirical

N
1 k ¥
Mk:—N;Xi. — F/B[ X, l
e Method of Moments idea:

e For many commonly used parametric families (e.g., Gaussian,
Poisson), the distribution is completely specified by a small set

distribution is

of parameters.

e These parameters are typically explicit functions of the
moments of the distribution (e.g., mean and variance for the
Gaussian).
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Method of Moments Estimation Il

e Although the moment generating function (MGF) uniquely
determines the entire distribution, in many model families, the
relevant parameters are uniquely determined by just the first
few moments.

e Therefore, as the empirical moments computed from data
converge to the true moments (by the Law of Large Numbers),
it is natural to estimate model parameters by equating
empirical and theoretical moments—Ieading to the method of
moments estimators.
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Method of Moments: generalized version

e To summarize mathematically, let i, = E[X*] be the
theoretical £th moment.

o Let fi, = & 3N, XF be the kth sample moment.

e (i is an estimate of ug; however, we don’t want an estimate
of 1, we want an estimate of 0!

e For models with finite parameters, 6 = (01, ...,0;), we can
often express 6; as a function of (p1, ..., ug):

ei - gi(:ulv o 7,U/]€)

29/45



Method of Moments: generalized version |l

e Thus, our estimate of #; would be found by plugging in the
empirical moments:
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Poisson Distribution

Suppose we observe data z7.,, and want to fit a Poisson model.

Since the Poisson distribution only has one parameter (), our
=

goal is to use(\x*’to estimate \.
N
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Real-data example

Poisson distribution with real data

The National Institute of Science and Technology collected data
about asbestos fibers on filters. Asbestos dissolved in water was
spread on a filter, and the number of fibers in each of 23 grid

squares were counted:

[1] 31 29 19 18 31 28 34 27 34 30 16 18 26 27 27 18 24 22
[19] 28 24 21 17 24 ~—> X .
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Real-data example Il

The mean can be calculated as:

mean (x)
= N\
oo 0 8
e
e What about the error associated with this estimate?
————

« N .

N VoS ™) N = A
U

N
X )Q'L ~J QQ‘\%&M)} m

\

-

=\

33/45


iPad Air 11-inch (M3)

iPad Air 11-inch (M3)

iPad Air 11-inch (M3)

iPad Air 11-inch (M3)

iPad Air 11-inch (M3)

iPad Air 11-inch (M3)

iPad Air 11-inch (M3)

iPad Air 11-inch (M3)


Sampling Distribution

”
NS~ Pas (AN
e As always, we are interested in the the uncertainty related to

our estimates.

e In most cases, we cannot directly calculate uncertainty of
estimates, and we will have to rely on more advance theory,
discussed later.

e Sometimes, however, we can calculate some form of
uncertainty based on the form of the estimator,

assumptions.

e The last (and next) models are such cases.
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Sampling Distribution |l

Sampling Distribution

Most estimates@of 0 are functions of the random variables
X1, Xo, ..., XN Thus,é_is also a random variable. The
distribution of 0 is called the

e In most cases, the exact distribution of 6 is unknowable. /

e Instead, we often get approximations to this distribution, and
in particular, the variance of the distribution, in order to
quantify uncertainty of the estimator.

e For the Poisson model and the method of moments estimator,

—
however, we can calculate this exactly.
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Sampling Distribution 111

Sampling distribution of Poisson MoM estimator

Let X3,..., X be modeled as iid from a Poisson(\)
distribution. If ) is the method of moments estimator of A, what
A

N = b X X2, ., Kn "‘\%DB'\% O\>

YX ~ Pois ( n>\>

=nx =YN¢

(
VO DTS %/

~ oS U\}v ,

is its sampling distribution?
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Sampling Distribution IV

For our specific dataset, we can approximate the standard error as:
X &~ 0Shestes

sqrt(mean(x) / length(x)) [|> round(2)

[1] 1.04% ’/S‘:C%(V\(%(l[_y\\\\\ \

The “pipe” operator in R |> takes the output of one function, and
inputs it as the first argument into the next function.

= /\.q(a ‘/?—

g x Abe -2t

NFOSE 7
»
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Example: Model Checking

e In addition to estimating the stochastic uncertainty due to
sampling distribution, we might want to assess inductive
uncertainty due to model selection.

e This is a large topic, one we will revisit in much more detail
later.

e For now, | want to present a simple idea that can be done
with what we already know.

e This will be based on a parametric bootstrap, a technique we

will discuss in detail later in the course.
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Example: Model Checking Il

The idea: we claim that the data come from a Poisson(\),
and we estimated A.

If the data really are Poisson()), then our estimate \ = \.

~

We can simulate many different data from Poisson()\), and
compare this to our real data.

If the model is reasonable, then our data shouldn’t look too
different from the simulations.

We can compare the empirical distribution functions from the
real data, and simulations.

39/45



ECDF: R code

library(tidyverse)

lambda <- mean(x)

results <- replicate(10, rpois(length(x), lambda = lambda)) [>
as.data.frame()

colnames(results) <- pasteO("sample_", 1:10)

results |>
pivot_longer (

cols = everything(), names_to = "replicate",
names_prefix = "sample_", values_to = "val"
) h>%

ggplot(aes(val, group = replicate)) +
stat_ecdf (geom = "step", col = ’grey30’) +
stat_ecdf (
data = data.frame(val = x, replicate = ’0’),
geom = ’step’, col = ’red’, linewidth = 1.2

) + theme_bw()
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Example: Normal Distribution

Normal Distribution
Suppose we observe [N observations, and we want to model them
as iid N(u,0?). Find the method of moments estimator

6 = (u,02).
\Ll}\(’l,/ x/\ﬂ«N /\/(/M/O’ ) .

e vl - \C\ ¢l
ELX\ = k\;/[x'\

My = By | = ol

J,_\

o'rL z E{,‘i;—g ‘M

el o’
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Example: Gamma Distribution

MoM estimator for Gamma distribution
Consider modeling the data X,..., Xy as iid Gamma(a, \).
Find the method of moments estimator for these data.

o= ,%) |

a - 2
ﬁ'. :EY*T& T-_>: \I\N(\(L—\)?E[Y;\&

A (4+) - (et
My r el s —

*l

=
>
S
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Example: Muon Decay

MoM estimator for Muon Decay
In statistical physics, the angle ¢ at which electrons are emitted
in muon decay is modeled using the following density:

1+ ax
2 9

—1<x<1,

f@; o) =

and where the parameter « satisfies —1 < o < 1, and x = cos ¢.
Supposing we observe data X1, Xo,..., Xy, what is the method
of moments estimator for o?

Yo Xg, o) X A £ (%)
|
‘/{Al - EYX‘\NX E j x £ 9(\ d’%
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