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Introduction



e The next approach we will discuss is Maximum Likelihood
Estimation (MLE).

o As we will see, the MLE has several desirable properties, and
as a result is often favored over approaches like the method of
moments.

e The material for this section largely comes from Chapter 8.5
of Rice (2007), and various sections in Pawitan (2001).
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Likelihood: an introduciton



What is likelihood?

e The term “likelihood” is often used colloquially to mean
something analogous to probability. E.g., “What is the
likelihood that it rains tomorrow?”

e When we use this term in statistics / mathematics, we mean
something specific that isn't the same thing as probability.

e The use of the term “likelihood” was first made by R. A.
Fisher, who was the architect and primary proponent of
“likelihood-based-inference” .

o We will start with the treatment of likelihood in the text “In

all Likelihood” (Pawitan, 2001), which is a fantastic resource
on the subject. (This will lead to some review...)
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What is likelihood? Il

Coin Flips
We will revisit this example, as it is a great starting point to
connect with existing understanding.

Consider flipping a coin N = 10 times.
X & # Jweds N=teelds, p &
row D—e Mg _
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What is likelihood? IlI

e For our specific coin-flipping example with N =10, X = 8§,
the likelihood function is

e This is plotted in the following way:

Akon

¥L<— seq(le= =1e=8, length.out = 1000)
Vj«ﬁ3‘< dbinom(8, 10 )

plot(x = x, y = y, type = ’1’)
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What is likelihood? IV
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What is likelihood? V

e From the figure, we see that p is unlikely to be less than
0.5,0r greater than 0.95.

e Given the data alone (no prior), we should prefer a value
somewhere in the middle of these values.

e We still have some uncertainty about the value of p, but the
likelihood gives us a numerical way to compare values of 6.
Stochastic uncertainty as a result of sampling is captured in
the likelihood function L(6).
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What is likelihood? VI

o The likelihood is not a probability. Though it came from a
probability, the likelihood function (a function of ) does not
satisfy the requirements to be a probability. In our previous o

\

_ %
example, we have: L19)= Qe(,\'(;ﬁ\ = (\;\ [5) (_lf9\

/OlL(G)dG@él.

e For discrete probability, the likelihood was continuous.
Discrete likelihoods are possible, arising when we want to
select from a list {61,02,...}.

(K
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What is likelihood? VII

e The idea behind maximum likelihood estimation (MLE) is

simple: our estimate is the value of 6 that maximizes the
likelihood function L(6).

e The MLE is considered a frequentist approach. Why? It
quantifies a maximum belief about a parameter, which is more
Bayesian in nature than Frequentist.

o As we'll see later, the MLE has nice theoretical Frequentist
properties, and as a result can be justified via the frequentist
paradigm.

e Still, it has close connection to Bayesian estimation and
interpretation. In fact, we'll discuss connections between the
MLE and Bayesian statistics later.
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What is likelihood? VIII

e Often, maximizing the likelihood directly is challenging, so we
maximize the log-likelihood instead.

e Other times, the likelihood has to be maximized numerically.

MLE of coin toss problem

Suppose we have N = 10 total tosses, and n total heads. Find
the MLE of p, the probability of heads.

L= [ Y=n) v

i N)Q \_P\M > \d\@

219) - \%t Lo = ly(h) ey p
) log (149,60
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Continuous models

e The interpretation of the likelihood function as the “the

probability of the observed data x*, considered as a function
of 8" makes perfect sense in the discrete model case.

e For continuous models, the technical issue arises that the
probability of any point value x is zero. L(,G\ < Pe (X: ?43 = QO
e We resolve the problem similar to what was done in Math
4450 and the John Rice text: approximate the probability by
discretizing into small, discrete intervals:

¥ e (x¥ —€/2,2" +€/2),

@ (X(‘ (F - tly /x,f e%\
&)
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Continuous models |l

thus, the probability of observing something e-close to the
data is:

L(0) = Py(X € (z" — €/2,z" + ¢/2))

x*4€/2 dne
:/*_ P f(x;@)l",v‘gef(:l:*;e). s

e Then, since the likelihood is only meaningful up to a constant
(we will discuss likelihood ratios later), then this has the same
behavior as L(0) = f(x*;0).

e There are more advanced approaches to this problem, but this
simple argument justifies the use of the pdf of a continuous
random variable as the likelihood L(6).

11/67


iPad Air 11-inch (M3)

iPad Air 11-inch (M3)


Continuous models |l

e Going forward: we once again will generalize a model f(z;0)
to mean either the pmf or pdf of a random variable. | will
often say “density” as a blanket term, even if this corresponds

to a pmf, not a density.

e Further, when we “integrate” a density, this means either:

/f(x;G) dx, If continuous

or

Z f(z;60), If discrete.
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Joint Probabilities



Likelihood with multiple observations

e Often the data we observe is multi-dimensional, rather than

summarized as a single observation.

o In this case, the likelihood @ is still determined via the joint
model:

L(0) = f(2*;0) = fx,.n (21,23, ..., 2N;0).

e We are mostly focused in this class in the case were the
observations are independent, meaning the likelihood factors:

N
L®) = ] ] fx.(a5;9).
i=1
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Likelihood with multiple observations ||

o We often further simplify this by assuming the data are
identically distributed:

e As we've seen, it's P ¢ ek to maximize the
log-likelihood. In the IID case:t)

N n
00) =log [ [ fx,(27:0) = _log fx, (2};0).
=1 =1
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Examples of finding the MLE

Traffic data: Poisson Model
Returning to a motivating example, suppose we model traffic

accidents in a given week as X1, Xo, ..., Xy, where the data are
iid Poisson(\). Obtain the MLE for .

S’Lb‘"%) B ?(\LL :7C>

-n
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Examples of finding the MLE 11

Two parameter model: Gaussian model

Suppose we model observations X1, ..., Xy as ID N(u,0?)
random variables. Find the MLE of § = (u, 0?).
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Plotting Normal Likelihood

e The likelihood function (not just to point estimate) will be
used to measure uncertainty.

e For models with a single parameter, we often plot the
likelihood curve.

e With more than one parameter, however, we have a likelihood
surface.

e For the iid Normal(y, %) model, code for plotting this surface
is available with course source-code.
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Plotting Normal Likelihood II

Likelihood of Normal(u &) Distribution

2.84

2.4+

2.0+

1.6

Figure 1: Likelihood surface of data generated from normal distribution.
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Calculating the likelihood in R

e For standard distributions, the likelihood is easy to calculate
in R. Recall the likelihood is:

L(0) = f(x7;0).

e For Xy,..., X, iid normal, the likelihood can be calculated
using dnorm:

x_star <- rnorm(n = 100, mean = 4, sd = 3)
theta <- c(0, 1)

Likelihood <- prod(dnorm(x, mean = thetal[l], sd = thetal[2]))
loglik <- sum(

dnorm(x, mean = theta[l], sd = theta[2], log = TRUE)
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Numeric Optimization



Numeric Optimization

e In the previous examples, the MLE was available analytically.

e In many cases, however, there is no closed-form solution for
the MLE, and it must be computed numerically.

e The next example demonstrates this, and then we will discuss

optimization strategies.
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Numeric Optimization Il

Example: Gamma likelihood
Suppose we want to model data X1, Xo,..., X, as iid
Gamma(a, A), which has the density function:

1
fl@; ) = =A% ™ 0<z < 0.
I'(a)

Find the MLE of 0 = (a, \).
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Numeric Optimization Il

e The previous example leads us to consider numeric techniques
for optimization and root finding.

e Note that this class is not an optimization course, so we'll
only cover some of the most basic ideas.

e More modern and efficient numeric optimization techniques
are readily available in R (or any other statistical software).

e For this class, we'll introduce some basic ideas like the

Newton-Raphsom approach for root finding and optimization,
as well as some other basic methods.
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Newton-Raphsom root-finding algorithm

e |dea: start at a point Ay, and approximate find the tangent
line of f(6) at the point 6y:

y — f(0o) = f'(60) (0 — 6o)

e Then, find the root of the tangent line by setting y = 0, and
solving for 6:

f(0o)

R I(N)

2367



Newton-Raphsom root-finding algorithm Il

e This root of the tangent line will be closer than our original

guess 6y, so we set:

f(6o)
01 =60p—
(80
and repeat: 0.)
_ f(0n
Ot == 16,

e We stop based on some convergence criteria, often something
like |0,+1 — 0| < €, for a small choice of €.

e (In class, check out wikipedia or draw a picture).
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Newton-Raphsom root-finding algorithm IlI

e We need now a starting point 6.

e Really we can pick anything, but it's best if we are close to
the MLE.

e For our current problem (Gamma distribution), we could use
the MoM estimator:
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Newton-Raphsom root-finding algorithm IV

NR_root <- function(thetalO, fn, deriv, tol = 1e-8, maxiter = 100
iter <- 0
theta_old <- thetal
theta_new <- theta_old + 10 * tol

while(abs(theta_old - theta_new) > tol && iter < maxiter) {
iter <- iter + 1
theta_old <- theta_new
theta_new <- theta_old - fn(theta_old) / deriv(theta_new)

cat("iters: ", iter, "\n")
theta_new
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Newton-Raphsom root-finding algorithm V

alpha_fn <- function(alpha, data) {
n <- length(data)
n * log(alpha) - n * log(mean(data)) + sum(log(data)) - n * di

}

alpha_deriv <- function(alpha, data) {
n <- length(data)
(n/alpha) - n * psigamma(alpha, 1)

set.seed(123)
data <- rgamma(n = 23, shape = 1, rate = 2)

27 /67



Newton-Raphsom root-finding algorithm VI

alpha_mom <- (mean(data)”2) / sd(data)

NR_root (
theta0 = alpha_mom,
fn = function(x) alpha_fn(x, data = data),
deriv = function(x) alpha_deriv(x, data = data),
tol = 1le-10

iters: 7
[1] 0.9728019
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Newton-Raphsom root-finding algorithm VII
e Once the estimate of « is found, we can then plug it in to get

the estimate of \:
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Newton-Raphsom root-finding algorithm VIII

Likelihood of Gamma(a) Distribution

44

0.50 0.75 1.00 1.25 1.50 1.75

Figure 2: Likelihood surface of data generated from Gamma distribution.
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Root-find considerations

e The function that we built for solving f(0) = 0 requires the
derivative f(0).
o |n some cases, the derivative is not readily available. Instead,
we can approximate using the definition:
fO+h)—f(6)  FO+A)—f(0)

i\ _ 1: ~
710 = I T

e We just pick A to be small, and we get a very good
approximation of the derivative.

e Thus, we don't really need to derivative for uni-variate
root-finding.
e The same mathematical approach can readily be extended into

higher dimensional 6, replacing the derivative with a gradient.
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Root-find considerations Il

e An important consideration, however, is that the results may
depend on your starting parameter 6y. In practice, you may
want to try multiple values of 6.
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Root-find considerations IlI

e In most programming languages, there will be pre-built
methods for root-fining and optimization.

e Our function we built works, but it doesn’'t do careful error

checking, and it isn't optimized for speed.

e For univariate-root finding f(f) = 0 in R, we can use the
uniroot function, which doesn't require a derivative.

e This function is very efficient for solving roots if # € R. For
higher dimensions, we need to import a different package.
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Root-find considerations IV

uniroot (
function(x) alpha_fn(x, data = data),
interval = c(0.5, 2)

$root
[1] 0.9728068

$f.root
[1] -7.754612e-05

$iter
[1] 6

$init.it
[1] NA
34 /67



Direct Numeric Optimization

e Based on our last example, we solved for one parameter \,

and numerically found the other, «, via root-finding.

e In many cases, this is not possible. Instead, we might want to
directly optimize both parameters.

e We will first introduce this by extending the Newton-Raphson
to perform optimization rather than root-finding.
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Direct Numeric Optimization Il

e The idea is simple: local maximum are just the zeros (roots)
of the derivative function.

e Thus, we still perform Newton-Raphson, but on the derivative
rather than the original function.

e Starting with initial estimate 0y, we update following the
equations until convergence:

f'(0n)
f//(gn

9n+1 = en -

=~
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Direct Numeric Optimization 1l

e If 6 is multivariate, then again we use the gradient: V f(6),
which is a vector, and Hessian: V2f(6?), which is a matrix:

Oni1 = On — (V2£(0,)) " V(f(6n)).

e This is the basic approach of many traditional machine
learning algorithms:

e Pick a model that depends on 6, and a loss-function f(0) that
depends on the data and model (here, our loss is the
log-likelihood function).

e If possible, calculate the derivative of the loss function with
respect to 6. If not, approximate numerically.

e If possible, calculate the Hessian of the loss function with
respect to #. If not, approximate numerically.
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Direct Numeric Optimization IV

e Start with initial guess for 0, take steps the size of the
(approximate) hessian of f(0), in the direction of the gradient

f().
e Many optimization strategies are variants of this basic
approach: In practice, Hessians / Gradients may be expensive

to compute.
o We will primarily focus our attention on pre-existing solutions.
e In R, the function we will use is called optim.

e There are several optimization methods available within this

function
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Direct Numeric Optimization V

Nelder-Mead: a heuristic, direct search method. Does not
require differentiability. Slow, but robust.

BFGS / L-BFGS-B: A Quasi-Newton approach, approximates
either (or both) the Hessian and Gradient numerically.
Extremely effective for (twice) differentiable functions, but
slow as 6 grows in dimension.

SANN: A stochastic approach. Hard to tune, but effective on
“rough” surfaces

CG: Conjugate Gradients. More “fragile” than BFGS, but
require less memory storage so can be useful for large 6.
Brent: Only univariate 6. In these cases, approximates the
gradient and hessian, similar to what we proposed. Very
effective, but requires univariate 6.
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Direct Numeric Optimization VI

e How it works: Get function f, method you want to use, and
starting point 6y. Example:

gamma_negloglik <- function(theta) {
—-dgamma (
x = data,
shape = thetal[l], rate = thetal2],
log = TRUE
) 1> sum(Q)
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Direct Numeric Optimization VII

optim(
c(2, 5),
fn = gamma_negloglik,
method = ’L-BFGS-B’,
lower = c(1le-8, 1e-8)

$par
[1] 0.9728026 1.9806150

$value
[1] 6.641716

$counts
function gradient

19 19
4167



Gradient Descent and Variations

e In Newton-Raphson, the Hessian just tells us the size of the
step.

e Often the gradient is available, but not the Hessian (or it is
expensive to compute the inverse, since it is a matrix).

e In these cases, we often use a different approach called

gradient descent.

e |dea: still step in the direction of the (negative) gradient, but
the step size will just be small é,,, and let §,, shrink over-time:

9n+1 - Hn - 5nvf(9n)
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Gradient Descent and Variations ||

e The idea is simple, but a lot of modern optimization
techniques and theory are based on this idea, finding various
strategies for specifying 9,,.

e Ex: BFGS approximates the Hessian, but scales poorly with
dimension. In deep learning, € has dimension in millions /
billions, so BFGS won't work (nor does optim).

e The success of deep-learning and Al is largely due to the
advent of automatic differentiation: software that calculates
the exact gradient of f(6,,), after simple calculations.

e Auto-diff libraries: PyTorch, TensorFlow, JAX, etc. Mostly
available in Python, though some are available in R.
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Gradient Descent and Variations Il

e Final approach we will discuss is stochastic gradient descent,
which is effectively randomly sampling the data to compute
an approximate gradient.

e The idea is that, even with auto-diff, gradients (with entire
data) are expensive to compute.

e Thus, randomly sample data to get a stochastic
approximation of the gradient; this is faster to compute, so we
get more update-steps.

e This is the primary technique used in most deep-learning

frameworks.
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Maximum Likelihood: continued examples

Muon Decay
Returning to the Muon-Decay example we used MoM to solve.
The density of iid observations Xy, ..., X, is:

1+ ax
2 M

-1<z<1 —-1<a<l.

fz;0) =

Find the MLE of a.
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Maximum Likelihood: continued examples ||

“If [the likelihood] cannot by maximized analytically, it may
be possible to use a computer to maximize [the likelihood]
numerically. In fact, this is one of the most important
features of the MLE. If a model can be written down,
then there is some hope of maximizing it numerically, and,
hence, finding MLEs of the parameters.” — Casella and
Berger (2024, Section 7.2)
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Constraint Optimization



Constrained optimization

e In all of our previous examples, we want to maximize the
log-likelihood function f(x;€), and there is some natural

constraints of 6.

e Examples: In Gamma(a, ), 0 = (a, A), and we are
constrained by a, A > 0.

e In the Gaussian model, § = (p, o). p is unconstrained, but
o> 0.

e Similarly, in the Muon-decay example: 6 = a € (0, 1).

e This leads to the issue of constrained optimization, and is
typically a requirement for maximum likelihood estimation.

e There are a few common strategies:
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Constrained optimization Il

e Limit search region to be within constraints: This is the basic
approach used by the uniroot function. It's also used
sometimes in optim, e.g., the L-BFGS-B method.

e Variable transformations. Modify the function so that the

search algorithm can try all possible values, but apply a
transformation that keeps it in the desired range.

e Example: if @ > 0 is a constraint, optimize over o with § = e®.
Thus, a < 0 is no problem, since 6 > 0. (Example on next
slide)

e Another common example is a logit transformation, which
ensures 0 < 0 <1, via log(6/(1 —0)) = a.

e In some cases, the constraint leads to an equation g(6) = 0, in
which case we can apply something like Lagrange-multipliers.

We will look at one of these cases as well.
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Example: Gamma likelihood

MLE of Gamma likelihood using transformations
Revisit the numeric optimization of the Gamma likelihood, using
variable transformations to deal with constraints.

gamma_negloglik2 <- function(alpha) {
theta <- exp(alpha)
-dgamma (
x = data,
shape = theta[l], rate = thetal[2],
log = TRUE
) 1> sum()
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Example: Gamma likelihood 11

results <- optim(
c(log(2), log(5)),
fn = gamma_negloglik2,
method = ’BFGS’

)

exp(results$par)

[1] 0.9728029 1.9806131
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Multinomial Cell probabilities

e In this example, we are bound by a curve, not a region.
Lagrange Multipliers are a good analytic approach.

e Consider fitting a multinomial distribution to a frequency
table.

e We let Xy,...,X,, be the countsin cells 1, ..., X,,, and we
assume that (X1,..., X,,) follows a multinomial distribution.

e The distribution has has parameters n: total counts, and p;
probability of cell i.

e The total count n = Ei’:l X;, and p; being the

e In this case, the X; are not independent, so we don't just take
product of IID observations.
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Multinomial Cell probabilities I

e However, the likelihood can be calculated via the pmf of the

multinomial distribution:
L() = f(z};6) le .

e Given X1,...,X,,, the number of trials n is known. The

parameter vector of interest is then:

0= (p1,---,0m)-

e The log-likelihood is given by:
£(0) =logn! — Zlog x;! + Zmi log p;.
= i=1
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Multinomial Cell probabilities 111

e Note that we have the constraint Zl p; = 1. Thus, we will
solve this using the Lagrange-multiplier technique.

e Reminder: Suppose we are trying to maximize (or minimize) a
function f(€), with the constraint g(f#) = 0. That is,

max f£(6)
subject tog(f) =0

e This optimization problem can be solved by introducing the
Lagrange function:

L0, ) = f(0) + Ag(0),
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Multinomial Cell probabilities IV

e And solving the system of equations that arises from:
VorL(0,\) = 0.

e Recall the partial derivative %E(Q,)\) = ¢(#), which must be

zero, giving the necessary constraint.

e Then, the condition VgL (6,\) = 0 ensures that the gradients
of f and g are parallel. That is, geometrically, the constraint
g(0) = 0 defines a curve or surface that we are constrained to;
on this surface, the max/min value of f occurs when a
level-set of f is tangent to the constraint curve g(#) = 0.
This occurs only where V f(8) = AVg(€), which gives rise to
the set of equations defined by VyL(0, \) = 0.
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Multinomial Cell probabilities V

MLE of multinomial cell probabilities
Use Lagrange multipliers to find the MLE of a multinomial
distribution, with X1, ..., X,,.
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Multinomial Cell probabilities VI

e Often, we can describe parameters of a model as functions of
other parameters.

e Example: in the multinomial model, we have parameters p;
representing probabilities for each cell. We might want to
make these a function of #, such that p;(0); then, we will still
want to estimate 6 using the data.

o In the case above the log-likelihood is then:

£(6) =logn! — Zlog z;! + Zz = 1"z; log p;(0).

i=1
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Hardy-Weinberg Equilibrium

e Consider alleles expressed as dominant (A) and recessive (a),
and they are expressed with rates 1 — 0 and 6, respectively.

e The Hardy-Weinberg principle states genotypes are expressed
in large, randomly mixing populations following the Punnett
square in Table 1.

A a
Al (1-p)? | p(l-p)
a | p(1—p) P’

Table 1: Genotype frequencies in large, randomly mixing population.
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Hardy-Weinberg Equilibrium 11

e Since the order of Aa or aA doesn’t matter, this results in
frequencies for AA, Aa, and aa: (1 — 0)2,20(1 — 0), 6.

e Supposing that we observe a population with these three
possible gene expressions. Then, using population counts, we
want to fit a multinomial model with m = 3 categories, and
probabilities defined as:

P1 = (1—9)2, P2 229(1—0), p3 :92.
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Hardy-Weinberg Equilibrium 111

Blood Types

In a Chinese population of Hong Kong in 1937, blood types
occurred with the following frequencies, where M and N are
erythrocyte antigens: M (342), MN (500), N (187), for a total of
1029 samples. Use a multinomial model to estimate the

frequency of alleles and genotypes.
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Invariance property

o We will next talk about general properties of estimators, and
introduce some theory.

e Before we do that, we still want to discuss point-estimation
following the Bayesian approach.

e The order of things is a little tricky, but before moving on we
will introduce one property of the MLE that can be used in
finding the MLE.

e The property is known as invariance.

e |dea: information we have about 6 should be the same
information we have about g(f) — we don't gain or loose
information by transforming the variable.
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Invariance property Il

Theorem: Invariance property of the MLE

(Theorem 7.2.10, Casella and Berger, 2024) If § is the MLE of 0,

then for any function g, g(f) is the MLE of g(6). For instance, if
0 = z*, then the MLE of sin(6) is sin(z* ).
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Invariance property Il

e Note in the previous theorem, nothing is preventing 6 to be
multivariate.

e Thus, if @ = (0y,...,0;) is the MLE of 6, then
9(0) = (g(e}), . ,g(ék)) is the MLE of ¢(d).

e For a more concrete example: suppose that p is the
probability of an event, a model parameter that we want to
estimate. Then if p is the MLE, then we can find the MLE for

the odds-ratio or log-odds ratio very easily:

MLE of odds ratio = LA, MLE of log-odds ratio = log 2 —.
1—p 1—p
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Comments on maximum likelihood

e There are many advantages of MLE, and is one reason that
MLE is one of the gold-standards of statistical estimation (the
other dominant approach being Bayesian estimation).

o Maximum likelihood is generally considered a frequentist
approach due to asymptotic theory results, which we cover
later. As presented, however, the MLE has more of a Bayesian
flavor to it: the likelihood measures some degree of “belief”
about a parameter, and we estimate the parameter by picking
the value that maximizes this belief.

e Maximum likelihood is not without it's criticisms. For
instance:
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Comments on maximum likelihood Il

e The MLE may not be unique (i.e., more than one global
maximum). For instance, él and 92 may both maximize the
likelihood L(0); if they are very different estimates, this could
cause a problem. It's also possible for an infinite number of 6
values to maximize the likelihood, which again can be
problematic.

e The MLE is often biased, and this can be particularly
problematic in small sample sizes.

e The MLE depends on model assumptions. If they are wrong,
the estimates might not make much sense.

e The MLE might not even exist! Le Cam, a famous 20th
century statistician who was largely a proponent of the MLE
approach, wrote a fun paper about some of these weaknesses,
and warned against blindly using the MLE (Le Cam, 1990):
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Comments on maximum likelihood IlI

“We present a list of principles leading to the construction
of good estimates. The main principle says that one should
not believe in principles but study each problem for its own
sake.”” — (Le Cam, 1990)

e Other difficulties arise in more complex models, such as
time-series or spatial data. Here, the data are not |ID, and the
distribution of each observation changes over times / space,
and observations are not independent. As a result, it's
generally very difficult to write down the likelihood, or find the
MLE. Minimizing a loss-function is generally easier in complex
settings, even if it results in a loss of information (discussed
later), or is equivalent to unrealistic Gaussian approximations

(i.e., minimizing MSE).
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