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Introduction



Overview

� The next approach we will discuss is Maximum Likelihood

Estimation (MLE).

� As we will see, the MLE has several desirable properties, and

as a result is often favored over approaches like the method of

moments.

� The material for this section largely comes from Chapter 8.5

of Rice (2007), and various sections in Pawitan (2001).
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Likelihood: an introduciton



What is likelihood?

� The term “likelihood” is often used colloquially to mean

something analogous to probability. E.g., “What is the

likelihood that it rains tomorrow?”

� When we use this term in statistics / mathematics, we mean

something specific that isn’t the same thing as probability.

� The use of the term “likelihood” was first made by R. A.

Fisher, who was the architect and primary proponent of

“likelihood-based-inference”.

� We will start with the treatment of likelihood in the text “In

all Likelihood” (Pawitan, 2001), which is a fantastic resource

on the subject. (This will lead to some review...)
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What is likelihood? II

Coin Flips

We will revisit this example, as it is a great starting point to

connect with existing understanding.

Consider flipping a coin N = 10 times.
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What is likelihood? III

� For our specific coin-flipping example with N = 10, X = 8,

the likelihood function is

L(θ) = Pθ(X = 8).

� This is plotted in the following way:

x <- seq(1e-8, 1-1e-8, length.out = 1000)

y <- dbinom(8, 10, x)

plot(x = x, y = y, type = ’l’)
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What is likelihood? IV
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What is likelihood? V

� From the figure, we see that p is unlikely to be less than

0.5,or greater than 0.95.

� Given the data alone (no prior), we should prefer a value

somewhere in the middle of these values.

� We still have some uncertainty about the value of p, but the

likelihood gives us a numerical way to compare values of θ.

Stochastic uncertainty as a result of sampling is captured in

the likelihood function L(θ).
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What is likelihood? VI

� The likelihood is not a probability. Though it came from a

probability, the likelihood function (a function of θ) does not

satisfy the requirements to be a probability. In our previous

example, we have: ∫ 1

0
L(θ) dθ = 1/11 ̸= 1.

� For discrete probability, the likelihood was continuous.

Discrete likelihoods are possible, arising when we want to

select from a list {θ1, θ2, . . .}.
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What is likelihood? VII

� The idea behind maximum likelihood estimation (MLE) is

simple: our estimate is the value of θ that maximizes the

likelihood function L(θ).

� The MLE is considered a frequentist approach. Why? It

quantifies a maximum belief about a parameter, which is more

Bayesian in nature than Frequentist.

� As we’ll see later, the MLE has nice theoretical Frequentist

properties, and as a result can be justified via the frequentist

paradigm.

� Still, it has close connection to Bayesian estimation and

interpretation. In fact, we’ll discuss connections between the

MLE and Bayesian statistics later.
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What is likelihood? VIII

� Often, maximizing the likelihood directly is challenging, so we

maximize the log-likelihood instead.

� Other times, the likelihood has to be maximized numerically.

MLE of coin toss problem

Suppose we have N = 10 total tosses, and n total heads. Find

the MLE of p, the probability of heads.
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Continuous models

� The interpretation of the likelihood function as the “the

probability of the observed data x∗, considered as a function

of θ” makes perfect sense in the discrete model case.

� For continuous models, the technical issue arises that the

probability of any point value x is zero.

� We resolve the problem similar to what was done in Math

4450 and the John Rice text: approximate the probability by

discretizing into small, discrete intervals:

x∗ ∈ (x∗ − ϵ/2, x∗ + ϵ/2),
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Continuous models II

thus, the probability of observing something ϵ-close to the

data is:

L(θ) = Pθ

(
X ∈ (x∗ − ϵ/2, x∗ + ϵ/2)

)
=

∫ x∗+ϵ/2

x∗−ϵ/2
f(x; θ) dθ ≈ ϵf(x∗; θ).

� Then, since the likelihood is only meaningful up to a constant

(we will discuss likelihood ratios later), then this has the same

behavior as L(θ) = f(x∗; θ).

� There are more advanced approaches to this problem, but this

simple argument justifies the use of the pdf of a continuous

random variable as the likelihood L(θ).
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Continuous models III

� Going forward: we once again will generalize a model f(x; θ)

to mean either the pmf or pdf of a random variable. I will

often say “density” as a blanket term, even if this corresponds

to a pmf, not a density.

� Further, when we “integrate” a density, this means either:∫
f(x; θ) dx, If continuous

or ∑
x

f(x; θ), If discrete.
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Joint Probabilities



Likelihood with multiple observations

� Often the data we observe is multi-dimensional, rather than

summarized as a single observation.

� In this case, the likelihood θ is still determined via the joint

model:

L(θ) = f(x∗; θ) = fX1:N
(x∗1, x

∗
2, . . . , x

∗
N ; θ).

� We are mostly focused in this class in the case were the

observations are independent, meaning the likelihood factors:

L(θ) =

N∏
i=1

fXi(x
∗
i ; θ).
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Likelihood with multiple observations II

� We often further simplify this by assuming the data are

identically distributed:

L(θ) =

N∏
i=1

fX1(x
∗
i ; θ).

� As we’ve seen, it’s generally easier to maximize the

log-likelihood. In the IID case:

ℓ(θ) = log

N∏
i=1

fX1(x
∗
i ; θ) =

n∑
i=1

log fX1(x
∗
i ; θ).
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Examples



Examples of finding the MLE

Traffic data: Poisson Model

Returning to a motivating example, suppose we model traffic

accidents in a given week as X1, X2, . . . , XN , where the data are

iid Poisson(λ). Obtain the MLE for λ.
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Examples of finding the MLE II

Two parameter model: Gaussian model

Suppose we model observations X1, . . . , XN as IID N(µ, σ2)

random variables. Find the MLE of θ = (µ, σ2).
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Plotting Normal Likelihood

� The likelihood function (not just to point estimate) will be

used to measure uncertainty.

� For models with a single parameter, we often plot the

likelihood curve.

� With more than one parameter, however, we have a likelihood

surface.

� For the iid Normal(µ, σ2) model, code for plotting this surface

is available with course source-code.
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Plotting Normal Likelihood II

Figure 1: Likelihood surface of data generated from normal distribution.
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Calculating the likelihood in R

� For standard distributions, the likelihood is easy to calculate

in R. Recall the likelihood is:

L(θ) = f(x∗i ; θ).

� For X1, . . . , Xn iid normal, the likelihood can be calculated

using dnorm:

# Synthetic data

x_star <- rnorm(n = 100, mean = 4, sd = 3)

theta <- c(0, 1) # value of theta

Likelihood <- prod(dnorm(x, mean = theta[1], sd = theta[2]))

loglik <- sum(

dnorm(x, mean = theta[1], sd = theta[2], log = TRUE)

)
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Numeric Optimization



Numeric Optimization

� In the previous examples, the MLE was available analytically.

� In many cases, however, there is no closed-form solution for

the MLE, and it must be computed numerically.

� The next example demonstrates this, and then we will discuss

optimization strategies.
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Numeric Optimization II

Example: Gamma likelihood

Suppose we want to model data X1, X2, . . . , Xn as iid

Gamma(α, λ), which has the density function:

f(x; α, λ) =
1

Γ(α)
λαxα−1e−λx, 0 ≤ x < ∞.

Find the MLE of θ = (α, λ).
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Numeric Optimization III

� The previous example leads us to consider numeric techniques

for optimization and root finding.

� Note that this class is not an optimization course, so we’ll

only cover some of the most basic ideas.

� More modern and efficient numeric optimization techniques

are readily available in R (or any other statistical software).

� For this class, we’ll introduce some basic ideas like the

Newton-Raphsom approach for root finding and optimization,

as well as some other basic methods.
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Newton-Raphsom root-finding algorithm

� Idea: start at a point θ0, and approximate find the tangent

line of f(θ) at the point θ0:

y − f(θ0) = f ′(θ0)
(
θ − θ0

)
� Then, find the root of the tangent line by setting y = 0, and

solving for θ:

θ = θ0 −
f(θ0)

f ′(θ0)
.
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Newton-Raphsom root-finding algorithm II

� This root of the tangent line will be closer than our original

guess θ0, so we set:

θ1 = θ0 −
f(θ0)

f ′(θ0)
,

and repeat:

θn+1 = θn − f(θn)

f ′(θn)
.

� We stop based on some convergence criteria, often something

like |θn+1 − θn| < ϵ, for a small choice of ϵ.

� (In class, check out wikipedia or draw a picture).
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Newton-Raphsom root-finding algorithm III

� We need now a starting point θ0.

� Really we can pick anything, but it’s best if we are close to

the MLE.

� For our current problem (Gamma distribution), we could use

the MoM estimator:

α̂MoM = θ0 =

(
x̄∗n

)2
1
n

∑n
i=1

(
x∗i − x̄∗n

)2 .
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Newton-Raphsom root-finding algorithm IV

NR_root <- function(theta0, fn, deriv, tol = 1e-8, maxiter = 1000) {
iter <- 0

theta_old <- theta0

theta_new <- theta_old + 10 * tol

while(abs(theta_old - theta_new) > tol && iter < maxiter) {
iter <- iter + 1

theta_old <- theta_new

theta_new <- theta_old - fn(theta_old) / deriv(theta_new)

}
cat("iters: ", iter, "\n")
theta_new

}

26 / 67



Newton-Raphsom root-finding algorithm V

alpha_fn <- function(alpha, data) {
n <- length(data)

n * log(alpha) - n * log(mean(data)) + sum(log(data)) - n * digamma(alpha)

}

alpha_deriv <- function(alpha, data) {
n <- length(data)

(n/alpha) - n * psigamma(alpha, 1)

}

set.seed(123)

data <- rgamma(n = 23, shape = 1, rate = 2)
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Newton-Raphsom root-finding algorithm VI

# Not the exact MoM estimate, but close enough:

alpha_mom <- (mean(data)^2) / sd(data)

NR_root(

theta0 = alpha_mom,

fn = function(x) alpha_fn(x, data = data),

deriv = function(x) alpha_deriv(x, data = data),

tol = 1e-10

)

iters: 7

[1] 0.9728019
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Newton-Raphsom root-finding algorithm VII

� Once the estimate of α is found, we can then plug it in to get

the estimate of λ:

λ̂ =
α̂

x̄∗n
= 1.981.
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Newton-Raphsom root-finding algorithm VIII

Figure 2: Likelihood surface of data generated from Gamma distribution.
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Root-find considerations

� The function that we built for solving f(θ) = 0 requires the

derivative f ′(θ).

� In some cases, the derivative is not readily available. Instead,

we can approximate using the definition:

f ′(θ) = lim
h→0

f(θ + h)− f(θ)

h
≈ f(θ +∆)− f(θ)

∆
.

� We just pick ∆ to be small, and we get a very good

approximation of the derivative.

� Thus, we don’t really need to derivative for uni-variate

root-finding.

� The same mathematical approach can readily be extended into

higher dimensional θ, replacing the derivative with a gradient.
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Root-find considerations II

� An important consideration, however, is that the results may

depend on your starting parameter θ0. In practice, you may

want to try multiple values of θ0.
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Root-find considerations III

� In most programming languages, there will be pre-built

methods for root-fining and optimization.

� Our function we built works, but it doesn’t do careful error

checking, and it isn’t optimized for speed.

� For univariate-root finding f(θ) = 0 in R, we can use the

uniroot function, which doesn’t require a derivative.

� This function is very efficient for solving roots if θ ∈ R. For
higher dimensions, we need to import a different package.
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Root-find considerations IV

uniroot(

function(x) alpha_fn(x, data = data),

interval = c(0.5, 2)

)

$root

[1] 0.9728068

$f.root

[1] -7.754612e-05

$iter

[1] 6

$init.it

[1] NA

$estim.prec

[1] 6.103516e-05
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Direct Numeric Optimization

� Based on our last example, we solved for one parameter λ,

and numerically found the other, α, via root-finding.

� In many cases, this is not possible. Instead, we might want to

directly optimize both parameters.

� We will first introduce this by extending the Newton-Raphson

to perform optimization rather than root-finding.
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Direct Numeric Optimization II

� The idea is simple: local maximum are just the zeros (roots)

of the derivative function.

� Thus, we still perform Newton-Raphson, but on the derivative

rather than the original function.

� Starting with initial estimate θ0, we update following the

equations until convergence:

θn+1 = θn − f ′(θn)

f ′′(θn)
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Direct Numeric Optimization III

� If θ is multivariate, then again we use the gradient: ∇f(θ),

which is a vector, and Hessian: ∇2f(θ), which is a matrix:

θn+1 = θn −
(
∇2f(θn)

)−1∇
(
f(θn)

)
.

� This is the basic approach of many traditional machine
learning algorithms:

� Pick a model that depends on θ, and a loss-function f(θ) that

depends on the data and model (here, our loss is the

log-likelihood function).

� If possible, calculate the derivative of the loss function with

respect to θ. If not, approximate numerically.

� If possible, calculate the Hessian of the loss function with

respect to θ. If not, approximate numerically.
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Direct Numeric Optimization IV

� Start with initial guess for θ, take steps the size of the

(approximate) hessian of f(θ), in the direction of the gradient

f(θ).

� Many optimization strategies are variants of this basic

approach: In practice, Hessians / Gradients may be expensive

to compute.

� We will primarily focus our attention on pre-existing solutions.

� In R, the function we will use is called optim.

� There are several optimization methods available within this

function
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Direct Numeric Optimization V

� Nelder-Mead: a heuristic, direct search method. Does not

require differentiability. Slow, but robust.

� BFGS / L-BFGS-B: A Quasi-Newton approach, approximates

either (or both) the Hessian and Gradient numerically.

Extremely effective for (twice) differentiable functions, but

slow as θ grows in dimension.

� SANN: A stochastic approach. Hard to tune, but effective on

“rough” surfaces

� CG: Conjugate Gradients. More “fragile” than BFGS, but

require less memory storage so can be useful for large θ.

� Brent: Only univariate θ. In these cases, approximates the

gradient and hessian, similar to what we proposed. Very

effective, but requires univariate θ.
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Direct Numeric Optimization VI

� How it works: Get function f , method you want to use, and

starting point θ0. Example:

gamma_negloglik <- function(theta) {
-dgamma(

x = data,

shape = theta[1], rate = theta[2],

log = TRUE

) |> sum()

}
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Direct Numeric Optimization VII

optim(

c(2, 5),

fn = gamma_negloglik,

method = ’L-BFGS-B’, # Constrained theta>0

lower = c(1e-8, 1e-8) # Constrained theta>0

)

$par

[1] 0.9728026 1.9806150

$value

[1] 6.641716

$counts

function gradient

19 19

$convergence

[1] 0

$message

[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
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Gradient Descent and Variations

� In Newton-Raphson, the Hessian just tells us the size of the

step.

� Often the gradient is available, but not the Hessian (or it is

expensive to compute the inverse, since it is a matrix).

� In these cases, we often use a different approach called

gradient descent.

� Idea: still step in the direction of the (negative) gradient, but

the step size will just be small δn, and let δn shrink over-time:

θn+1 = θn − δn∇f(θn).
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Gradient Descent and Variations II

� The idea is simple, but a lot of modern optimization

techniques and theory are based on this idea, finding various

strategies for specifying δn.

� Ex: BFGS approximates the Hessian, but scales poorly with

dimension. In deep learning, θ has dimension in millions /

billions, so BFGS won’t work (nor does optim).

� The success of deep-learning and AI is largely due to the

advent of automatic differentiation: software that calculates

the exact gradient of f(θn), after simple calculations.

� Auto-diff libraries: PyTorch, TensorFlow, JAX, etc. Mostly

available in Python, though some are available in R.
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Gradient Descent and Variations III

� Final approach we will discuss is stochastic gradient descent,

which is effectively randomly sampling the data to compute

an approximate gradient.

� The idea is that, even with auto-diff, gradients (with entire

data) are expensive to compute.

� Thus, randomly sample data to get a stochastic

approximation of the gradient; this is faster to compute, so we

get more update-steps.

� This is the primary technique used in most deep-learning

frameworks.
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Maximum Likelihood: continued examples

Muon Decay

Returning to the Muon-Decay example we used MoM to solve.

The density of iid observations X1, . . . , Xn is:

f(x;α) =
1 + αx

2
, −1 ≤ x ≤ 1 − 1 ≤ α ≤ 1.

Find the MLE of α.
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Maximum Likelihood: continued examples II

“If [the likelihood] cannot by maximized analytically, it may

be possible to use a computer to maximize [the likelihood]

numerically. In fact, this is one of the most important

features of the MLE. If a model can be written down,

then there is some hope of maximizing it numerically, and,

hence, finding MLEs of the parameters.” – Casella and

Berger (2024, Section 7.2)
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Constraint Optimization



Constrained optimization

� In all of our previous examples, we want to maximize the

log-likelihood function f(x∗i ; θ), and there is some natural

constraints of θ.

� Examples: In Gamma(α, λ), θ = (α, λ), and we are

constrained by α, λ > 0.

� In the Gaussian model, θ = (µ, σ). µ is unconstrained, but

σ ≥ 0.

� Similarly, in the Muon-decay example: θ = α ∈ (0, 1).

� This leads to the issue of constrained optimization, and is

typically a requirement for maximum likelihood estimation.

� There are a few common strategies:
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Constrained optimization II

� Limit search region to be within constraints: This is the basic

approach used by the uniroot function. It’s also used

sometimes in optim, e.g., the L-BFGS-B method.

� Variable transformations. Modify the function so that the
search algorithm can try all possible values, but apply a
transformation that keeps it in the desired range.

� Example: if θ > 0 is a constraint, optimize over α with θ = eα.

Thus, α < 0 is no problem, since θ > 0. (Example on next

slide)

� Another common example is a logit transformation, which

ensures 0 ≤ θ ≤ 1, via log(θ/(1− θ)) = α.

� In some cases, the constraint leads to an equation g(θ) = 0, in

which case we can apply something like Lagrange-multipliers.

We will look at one of these cases as well.

48 / 67



Example: Gamma likelihood

MLE of Gamma likelihood using transformations

Revisit the numeric optimization of the Gamma likelihood, using

variable transformations to deal with constraints.

gamma_negloglik2 <- function(alpha) {
theta <- exp(alpha)

-dgamma(

x = data,

shape = theta[1], rate = theta[2],

log = TRUE

) |> sum()

}
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Example: Gamma likelihood II

results <- optim(

c(log(2), log(5)),

fn = gamma_negloglik2,

method = ’BFGS’ # unconstrained

)

exp(results$par) # Theta

[1] 0.9728029 1.9806131
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Multinomial Cell probabilities

� In this example, we are bound by a curve, not a region.

Lagrange Multipliers are a good analytic approach.

� Consider fitting a multinomial distribution to a frequency

table.

� We let X1, . . . , Xm be the counts in cells 1, . . . , Xm, and we

assume that (X1, . . . , Xm) follows a multinomial distribution.

� The distribution has has parameters n: total counts, and pi

probability of cell i.

� The total count n =
∑b

i=1Xi, and pi being the

� In this case, the Xi are not independent, so we don’t just take

product of IID observations.
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Multinomial Cell probabilities II

� However, the likelihood can be calculated via the pmf of the

multinomial distribution:

L(θ) = f(x∗i ; θ) =
n!∏m

i=1 xi!

m∏
i=1

p
x∗
i

i .

� Given X1, . . . , Xm, the number of trials n is known. The

parameter vector of interest is then:

θ = (p1, . . . , pm).

� The log-likelihood is given by:

ℓ(θ) = log n!−
m∑
i=1

log xi! +

m∑
i=1

xi log pi.
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Multinomial Cell probabilities III

� Note that we have the constraint
∑

i pi = 1. Thus, we will

solve this using the Lagrange-multiplier technique.

� Reminder: Suppose we are trying to maximize (or minimize) a

function f(θ), with the constraint g(θ) = 0. That is,

max
θ

f(θ)

subject to g(θ) = 0

� This optimization problem can be solved by introducing the

Lagrange function:

L(θ, λ) = f(θ) + λg(θ),
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Multinomial Cell probabilities IV

� And solving the system of equations that arises from:

∇θ,λL(θ, λ) = 0.

� Recall the partial derivative ∂
∂λL(θ, λ) = g(θ), which must be

zero, giving the necessary constraint.

� Then, the condition ∇θL(θ, λ) = 0 ensures that the gradients

of f and g are parallel. That is, geometrically, the constraint

g(θ) = 0 defines a curve or surface that we are constrained to;

on this surface, the max/min value of f occurs when a

level-set of f is tangent to the constraint curve g(θ) = 0.

This occurs only where ∇f(θ) = λ∇g(θ), which gives rise to

the set of equations defined by ∇θL(θ, λ) = 0.

54 / 67



Multinomial Cell probabilities V

MLE of multinomial cell probabilities

Use Lagrange multipliers to find the MLE of a multinomial

distribution, with X1, . . . , Xm.

55 / 67



Multinomial Cell probabilities VI

� Often, we can describe parameters of a model as functions of

other parameters.

� Example: in the multinomial model, we have parameters pi

representing probabilities for each cell. We might want to

make these a function of θ, such that pi(θ); then, we will still

want to estimate θ using the data.

� In the case above the log-likelihood is then:

ℓ(θ) = log n!−
m∑
i=1

log x∗i ! +
∑

i = 1mxi log pi(θ).
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Hardy-Weinberg Equilibrium

� Consider alleles expressed as dominant (A) and recessive (a),

and they are expressed with rates 1− θ and θ, respectively.

� The Hardy-Weinberg principle states genotypes are expressed

in large, randomly mixing populations following the Punnett

square in Table 1.

A a

A (1− p)2 p(1− p)

a p(1− p) p2

Table 1: Genotype frequencies in large, randomly mixing population.
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Hardy-Weinberg Equilibrium II

� Since the order of Aa or aA doesn’t matter, this results in

frequencies for AA, Aa, and aa: (1− θ)2, 2θ(1− θ), θ2.

� Supposing that we observe a population with these three

possible gene expressions. Then, using population counts, we

want to fit a multinomial model with m = 3 categories, and

probabilities defined as:

p1 = (1− θ)2, p2 = 2θ(1− θ), p3 = θ2.
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Hardy-Weinberg Equilibrium III

Blood Types

In a Chinese population of Hong Kong in 1937, blood types

occurred with the following frequencies, where M and N are

erythrocyte antigens: M (342), MN (500), N (187), for a total of

1029 samples. Use a multinomial model to estimate the

frequency of alleles and genotypes.
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Invariance property of the MLE



Invariance property

� We will next talk about general properties of estimators, and

introduce some theory.

� Before we do that, we still want to discuss point-estimation

following the Bayesian approach.

� The order of things is a little tricky, but before moving on we

will introduce one property of the MLE that can be used in

finding the MLE.

� The property is known as invariance.

� Idea: information we have about θ should be the same

information we have about g(θ) – we don’t gain or loose

information by transforming the variable.
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Invariance property II

Theorem: Invariance property of the MLE

(Theorem 7.2.10, Casella and Berger, 2024) If θ̂ is the MLE of θ,

then for any function g, g(θ̂) is the MLE of g(θ). For instance, if

θ̂ = x̄∗n, then the MLE of sin(θ) is sin(x̄∗n).
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Invariance property III

� Note in the previous theorem, nothing is preventing θ to be

multivariate.

� Thus, if θ̂ = (θ̂1, . . . , θ̂k) is the MLE of θ, then

g(θ̂) =
(
g
(
θ̂1
)
, . . . , g

(
θ̂k
))

is the MLE of g(θ).

� For a more concrete example: suppose that p is the

probability of an event, a model parameter that we want to

estimate. Then if p̂ is the MLE, then we can find the MLE for

the odds-ratio or log-odds ratio very easily:

MLE of odds ratio =
p̂

1− p̂
, MLE of log-odds ratio = log

p̂

1− p̂
.
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Comments on maximum likelihood

� There are many advantages of MLE, and is one reason that

MLE is one of the gold-standards of statistical estimation (the

other dominant approach being Bayesian estimation).

� Maximum likelihood is generally considered a frequentist

approach due to asymptotic theory results, which we cover

later. As presented, however, the MLE has more of a Bayesian

flavor to it: the likelihood measures some degree of “belief”

about a parameter, and we estimate the parameter by picking

the value that maximizes this belief.

� Maximum likelihood is not without it’s criticisms. For
instance:
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Comments on maximum likelihood II

� The MLE may not be unique (i.e., more than one global

maximum). For instance, θ̂1 and θ̂2 may both maximize the

likelihood L(θ); if they are very different estimates, this could

cause a problem. It’s also possible for an infinite number of θ

values to maximize the likelihood, which again can be

problematic.

� The MLE is often biased, and this can be particularly

problematic in small sample sizes.

� The MLE depends on model assumptions. If they are wrong,

the estimates might not make much sense.

� The MLE might not even exist! Le Cam, a famous 20th

century statistician who was largely a proponent of the MLE

approach, wrote a fun paper about some of these weaknesses,

and warned against blindly using the MLE (Le Cam, 1990):
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Comments on maximum likelihood III

“We present a list of principles leading to the construction

of good estimates.The main principle says that one should

not believe in principles but study each problem for its own

sake.”” – (Le Cam, 1990)

� Other difficulties arise in more complex models, such as

time-series or spatial data. Here, the data are not IID, and the

distribution of each observation changes over times / space,

and observations are not independent. As a result, it’s

generally very difficult to write down the likelihood, or find the

MLE. Minimizing a loss-function is generally easier in complex

settings, even if it results in a loss of information (discussed

later), or is equivalent to unrealistic Gaussian approximations

(i.e., minimizing MSE).
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