Mathematical Statistics I

Chapter 6: Distributions Derived from the Normal Distribution

Jesse Wheeler

Outline

1. χ^2 distributions

2. The t and F distributions

3. Sampling Distributions

χ^2 distributions

Introduction

- This material comes primarily from Rice (2007, Chapter 6).
- Here, we introduce several important distributions that arise from transformations applied to normal distributions.
- Many of these distributions form the basis of traditional statistical inference procedures that are taught in introductory statistics courses.
- They are very useful in practice due to the central limit theorem: with enough observations, the limiting behavior of nearly all distributions is normal, so distributions that come from the normal distribution arise in practice as well.

$\chi^2_{ u}$ Distribution

• The first distribution we will consider is the χ_1^2 (Chi-square with 1 degree of freedom).

Definition: χ_1^2 distribution

If Z is a standard normal random variable, then $X=Z^2$ is called the chi-square distribution with 1 degree of freedom.

• We typically use the notation $X \sim \chi_1^2$ (in LaTeX: \chi).

χ^2_{ν} Distribution II

The pdf of χ_1^2

Let X follow a χ^2_1 distribution. Then, the pdf of X is given by

$$f_X(x) = \frac{1}{\sqrt{2\pi}} x^{-1/2} e^{-x/2}.$$
 \swarrow $\chi^{-\alpha} e^{-\lambda \chi}$

$$Z \sim N(0,1)$$
, $f_{z}(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^{2}}$

$$x = 2$$

S'colf method" \neq

Change of variables: $f_{x}(x) - f_{z}(g'(x))$.

$\chi^2_{ u}$ Distribution III

- In Chapter 2, we previously noted that that $f_X(x)$ is an example of a Gamma distribution.
- Specifically, the kernel of the Gamma density is x raised to some power, and e raised to some multiple of x:

some power, and
$$e$$
 raised to some multiple of x :
$$f_{\mathsf{Gamma}}(x) \propto x^{\alpha-1} e^{-\lambda x}.$$
• Thus, ignoring the constant for a moment, if $\alpha = 1/2$,

Thus, ignoring the constant for a moment, if $\alpha=1/2$, $\lambda=1/2$, then the pdf of $X\sim\chi_1^2$ is just this Gamma density:

$$f_X(x) \propto x^{-1/2} e^{-x/2} = x^{\alpha - 1} e^{-\lambda x}$$
.

• Since both functions are proper probability density functions, they have to integrate to one, so the normalizing constant *must* be the same.

S(x/0) use data that come from
$$f(x;0)$$
to BSTITUTE Q =

O is treated as a R.V.

 $T(\theta \mid X) = \frac{f(x|\theta)}{f(x|\theta)} \frac{\pi_0(0)}{\pi_0(0)} d\theta$

is only a function of X, not Q.

 $T(\theta \mid X) = C(x) f(x|\theta) \frac{\pi_0(0)}{\pi_0(0)}$

$\chi^2_{ u}$ Distribution IV

- This is also easily verified. The normalizing constant of the Gamma distribution is $\lambda^{\alpha}/\Gamma(\alpha)$.
- With our specific values of $\lambda=\alpha=1/2$, and recalling that $\Gamma(1/2)=\sqrt{\pi}$,

$$\frac{1}{\sqrt{2\pi}} = \frac{(1/2)^{(1/2)}}{\Gamma(1/2)} = \frac{\lambda^{\alpha}}{\Gamma(\alpha)}$$

MGF of χ_1^2

We previously derived the MGF of a Gamma (α,λ) distribution: $M(t) = \left(\lambda/(\lambda-t)\right)^{\alpha}$. Thus, the MGF of a Chi-square(1) distribution is

$$M(t) = (1 - 2t)^{-1/2}, \quad t < 1/2.$$

$\chi^2_{ u}$ Distribution V

Definition

If U_1, U_2, \ldots, U_n are n independent χ^2_1 random variables, then

$$V = U_1 + U_2 + \ldots + U_n$$

then the distribution of V is called the Chi-square distribution with n degrees of freedom, denoted χ_n^2 .

• There are a few different ways of deriving the pdf of a χ^2_n random variable. Here, we will use the MGF uniqueness theorem.

χ^2_{ν} Distribution VI

• Let $M_i(t)$ denote the MGF of U_i , where $U_i \sim \chi_1^2$. Then, due to independence,

$$M_V(t) = M_{\sum_i U_i}(t) = \prod_{i=1}^n M_i(t) = \left(M_{\parallel}(t)\right)^n = (1-2t)^{-n/2}$$

$$= \left(\frac{1}{1-2t}\right)^{n/2}$$
 • Compare this to the Gamma MGF: $M(t) = \left(\lambda/(\lambda-t)\right)^{\alpha}$

- Compare this to the Gamma MGF: $M(t) = (\lambda/(\lambda t))$ Then, setting $\lambda = 1/2$, $\alpha = n/2$, we see that $N(t) = (\lambda/(\lambda - t))$ Gamma(n/2, 1/2) distribution.
- ullet Thus, the pdf of V is given by:

$$f_V(v) = \frac{1}{2^{n/2}\Gamma(n/2)}v^{(n/2)-1}e^{-v/2}.$$

χ^2_{ν} Distribution VII

• The expected value and variance of the χ^2_n distribution can easily be found then by using the fact that it is a special case of a Gamma distribution.

The t and F distributions

The Student's t distributions

The Student's t distribution

If $Z \sim N(0,1)$ and $U \sim \chi_n^2$, and Z and U are independent, then the distribution of T, where

$$T = \frac{Z}{\sqrt{U/n}},$$

is called the Student's t distribution (or simply the t distribution) with n degrees of freedom, which is often denoted t_n

- ullet Students often forget the make sure that Z and U in the definition of the t distribution are independent.
- The t distribution is the distribution used to perform the famed "t-test".

The Student's t distributions II

The density of the t_n distribution

The pdf of the t distribution with n degrees of freedom is:

$$f(t) = \frac{\Gamma\left((n+1)/2\right)}{\sqrt{n\pi}\Gamma(n/2)} \left(1 + \frac{t^2}{n}\right)^{-(n+1)/2}$$

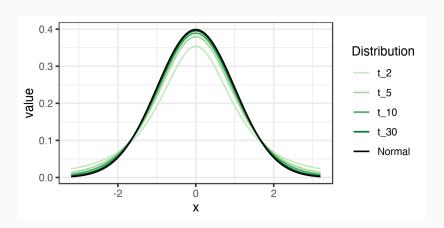
$$P\left(\top \leq t\right) = P\left(\frac{2}{\sqrt{n}} \leq t\right)$$

$$\bullet \text{ The derivation of the pdf of a } t \text{ distribution is a good practice}$$

- exercise.
- Recall it is defined as the ratio of two independent random variables; in Chapter 3, we derived a formula for computing densities of random variables of this form.
- Note that f(t) = f(-t), and so f is symmetric about zero.
- It also has a bell-curve shape similar to a normal distribution.

The Student's t distributions III

• You can see as $n \to \infty$, the t_n distribution converges to the standard normal (e.g., use Slutsky's theorem, good practice).



The F distributions

Sampling Distributions

The sample mean

- In what follows, we'll assume that we are taking samples X_1, X_2, \dots, X_n from a larger population.
- These samples can be repeated experiments, or repeated observations. However, we will assume in general that the samples are independent and identically distributed, unless stated otherwise.
- For the remainder of the chapter, we will also assume $X_i \sim N(\mu, \sigma^2)$ for all i.

The sample mean II

 As a reminder from earlier chapters, linear combinations of independent normal random variables are also normally distributed. Thus, if X_1, X_2, \ldots, X_n are iid normal, then (\bar{X}_n) is also normally distributed. $\left(\frac{1}{n}X_1 + \frac{1}{n}X_2 + \dots + \frac{1}{n}X_n\right) = \frac{1}{n}\sum X_i$

Sampling distribution of the mean

If X_i are iid $N(\mu, \sigma^2)$, then \bar{X}_n is normal, with

$$E\left[1/n\sum_{i}X_{i}\right] = (1/n)\sum_{i}\mu = \mu,$$

$$\operatorname{Var}(1/n\sum_{i}X_{i})=1/n^{2}\sum_{i}\sigma^{2}=\sigma^{2}/n.$$

Thus, $\bar{X}_n \sim N(\mu, \sigma^2/n)$.

Y is population,
$$\forall n \approx N(u)^{2}$$

sampling distribution of
$$\sqrt{x_n}$$
 is $N(u, \frac{\sigma^2}{n})$.

The sample mean III

Lemma 6.1: Independent Normal RVs

Let X and Y be normally distributed random variables. Then X and Y are independent, if and only if

$$Cov(X, Y) = 0.$$

If independent, the Cor(x, y) = 0.

- The above statement can be proved using the factorization theorem, and considering the MGF or pdf of a bivariate normal distribution.
- Recall that for most distributions, independence implies Cov(X,Y)=0, but not the other way around.
- It turns out that the normal distribution is the only distribution that has this property.

The sample mean IV

Theorem 6.1: Independence of Deviations

Let X_1, \ldots, X_n be iid $N(\mu, \sigma^2)$ random variables. Then, \bar{X}_n is independent of the vector of random variables called the deviations, $(X_i - \bar{X}_n)_{i=1}^n$.

Proof.

$$D_{i} = (\chi_{i} - \chi_{n})$$

$$\overline{\chi_{n}} \perp \chi_{i} - \chi_{n}$$

$$(\overline{\chi_{n}})$$

- · In is Normal (M, or).

> cov is zero implies

$$Cov\left(\overline{X}_{n}, X_{i} - \overline{X}_{n}\right) = cov(\overline{X}_{n}, X_{i}) - cov(\overline{X}_{n}, \overline{X}_{n})$$

$$= cov\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}, X_{i}\right) - cov\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}, \frac{1}{n}\sum_{k=1}^{n}X_{k}\right)$$

$$= \frac{1}{n}cov\left(X_{i}, X_{i}\right) - \frac{1}{n^{2}}\sum_{j=1}^{n}\sum_{k=1}^{n}cov\left(X_{i}, X_{i}\right)$$

$$= \frac{1}{n} \frac{\operatorname{cov}(x_i, x_i)}{1 - \frac{1}{n^2}} \frac{\sum_{j=1}^{n} \operatorname{cov}(x_j, x_j)}{1 - \frac{1}{n^2} \sum_{j=1}^{n} o^2}$$

$$= \frac{1}{n} \sigma^2 - \frac{1}{n^2} \sum_{j=1}^{n} \sigma^2$$

$$= \frac{1}{n} \sigma^2 - \frac{1}{n} \sigma^2 = 0$$

$$= \frac{1}{n} \sigma^2 - \frac{1}{n} \sigma^2 = 0$$

$$= \frac{1}{n} \sigma^2 - \frac{1}{n} \sigma^2 = 0$$

The sample mean V

Corollary 6.1

If the X_i are iid $N(\mu,\sigma^2)$, then \bar{X}_n is independent of the sample variance S^2 , defined by

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2}.$$

 $\frac{1}{x_n}$ $\frac{1}{x_n}$ $\frac{1}{x_n}$ $\frac{1}{x_n}$ $\frac{1}{x_n}$

The sample mean VI

Theorem 6.2

If the X_i are iid normal, then $(n-1)S^2/\sigma^2$ has a chi-square distribution with n-1 degrees of freedom.

Proof.
$$\left(\frac{x_{i}-\mu}{\sigma}\right) \sim N(0,1)$$

$$\left(\frac{x_{i}-\mu}{\sigma}\right)^{2} \sim \chi^{2}$$

$$= \sum_{\sigma} \left(\frac{x_{i}-\mu}{\sigma}\right)^{2} \sim \chi^{2}$$

$$= \sum_{\sigma} \left(\frac{x_{i}-\mu}{\sigma}\right)^{2} \sim \chi^{2}$$

19 / 23

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{$$

$$= (1-2+)^{-(n-1)/2}$$
Mgf of χ^2_{n-1}

The sample mean VII

Theorem 6.3: t distribution

Let X_i be iid Normal (μ, σ^2) random variables, and let \bar{X}_n and S^2 denote the sample mean and variance, respectively. Then,

$$\frac{\bar{X}_n - \mu}{S/\sqrt{n}} \sim t_{n-1}.$$

t-distin defined as ration of N(0,1), and Syrt of
$$\chi_n^2/\eta$$
 = $\frac{2}{\sqrt{\nu/n}}$

$$\frac{\overline{\chi_{n-M}}}{5/5n} = \frac{\left(\frac{\overline{\chi}_{n-M}}{\sigma/\overline{\chi_{n}}}\right)}{\left(\frac{\overline{\chi}_{n-M}}{\sigma/\overline{\chi_{n}}}\right)} \sim \chi^{2}_{n-1}$$

$$\frac{(n-1)s^{2}}{\sigma^{2}(n-1)} \sim \chi^{2}_{n-1}$$

Final Comments

- The identity in Theorem 6.3 provides the theoretical justification for a one-sample t-test. The justification for a two-sample t-test is derived in a similar way.
- Theorem 6.3 relies on the X_i coming from a normal population, then this distribution is exact. The normal distribution arises in a large number of real-world applications.
- In practice, however, the t-test is often used even when the samples X_i do not come from a normal distribution.
- The justification of this practice can heuristically be justified by the central limit theorem: Even if the X_i are not normally distributed, $\bar{X}_n \mu$ will be approximately normally distributed, with even relatively small n.

Final Comments II

- Note, however, that the limiting distribution of the statistic in Theorem 6.3 is normal, not t. This can be shown with Slutsky's Theorem, noting that $S_n^2 \xrightarrow{p} \sigma^2$ (see CLT example in Chapter 5 slides.)
- In practice, the t distribution is often used because it has
 heavier tails than the normal distribution, and thus leads to
 conservative estimates of the distribution of the statistic in
 Theorem 6.3. Simulation studies suggest this approximation is
 quite good, even when there are large deviations from
 normality.

References and Acknowledgements

Rice JA (2007). *Mathematical statistics and data analysis*, volume 371. 3 edition. Thomson/Brooks/Cole Belmont, CA.

- Compiled on November 25, 2025 using R version 4.5.1.
- Licensed under the Creative Commons Attribution NonCommercial license. Please share and remix
 non-commercially, mentioning its origin.
- We acknowledge students and instructors for previous versions of this course / slides.